

Action 10: Evaluating aerosols impacts on Numerical Weather and Subseasonal Prediction

Ariane Frassoni¹, François Engelbrecht², Frederic Vitart³ and Angela Benedetti³ on behalf of S2S

1-CPTEC, Brazil; 2-CSIR, S. Africa, 3-ECMWF, England

Ariane.frassoni@inpe.br

33rd WGNE Meeting, Tokyo, Japan Oct 2018

Health impacts

https://www.nature.com/articles/d41586-018-06150-5

WGNE Aer Phase 1 - Participating Models

Institution Model	Domain Resolution	Aerosol Species	A & BB Emissions	Aerosol Physics	Cloud Physics	Aerosol Assim.	
CPTEC BRAMS	Regional 10 km	BC, Sea-Salt, OC, SO4	EDGAR 4. 3BEM	bulk	2-mom	no	
JMA MASINGAR	Global TL319L40	Dust, Sea-Salt, BC, OC, SO4	MACCity GFAS 1.0	2-mom	2-mom	no	
ECMWF Global	Global T511L60			Bulk	Bulk	yes	
Météo-France ALADIN + ORILAM	Regional 7.5 km	Dust	DEAD model	3-mom log- no normal	Bulk	no	
ESRL/NOAA WRF-Chem	Regional cloud res.	(many)	EDGAR 4. 3BEM	Bulk and Modal	2-mom	no	
NASA/GSFC GEOS-5+GOCART	Global 25 km	Dust, Sea-Salt, BC, OC, SO4	EDGAR 4.1 QFED 2.4	Bulk	Bulk or 2-mom	yes	
NCEP NGAC+GOCART	Global T126	Dust, Sea-Salt, BC, OC, SO4	Climatological Aerosols	Bulk	Bulk	no	
Barcelona SC	regional	dust	BSC-dust model	8 dust size bins	Same as in WRF	no	

Case Studies

1) Dust over Egypt:
 2) 4/2012

2) Pollution in China: 1/2013

3) Smoke in Brazil: 9/2012

Case 3: Persistent Smoke in South America

-3.5

-3

-2.5

-2

-1.5

-0.5

0

0.5

- Low effect with climatological aerosol
- Decrease in Radiative shortwave flux at surface and air temperature at 2m
- Large discrepancies among centers

General overview of impacts on the prediction skill – case 3

Variable	ECN	1WF	JN	IA	NA	SA	NC	EP	NO	AA	СРТ	EC
Skill score	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS
2-m temp	1	1	 Image: A start of the start of	1	1	1	✓	1	1	1	1	✓
10-m wind speed	×	X	×	X	1	1	X	X	1	1	1	1
10-m wind direction	1	1	X	✓	X	1	X	X	X	✓	1	1
rainfall	~	1			×	×	×	X	1	X	1	~

DOMAIN of EVALUATION

Phase 1 - Questions

How important are aerosols for predicting the physical system?

Direct effect is important - improvements on NWP skill considering Aerosols

How important is atmospheric model quality for air quality forecasting? Important (Ex: JMA and ECMWF lower erros) more investigation is needed

What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction? To be discussed

The Second Phase of the WGNE-Aerosol Project (WGNE-Aer2)

Systematic NWP experiment

Higher resolution regional configurations in order to address the importance of interactive aerosols on weather predictability

S2S experiments

Subseasonal re-forecasts experiments based on ensemble approach in a global scale in order to address the importance of interactive aerosols on subseasonal predictability

Importance of aerosols on S2S predictability

May-June 2003-2015

- 11 ensemble members
- 4 experiments:
- → Two different climatologies
- → Prognostic aerosols initialized using the timevarying CAMSira
- → Prognostic aerosols
 initialized using a fixed
 climatology (based on a
 CAMS experiments without
 data assimilation) –PROG2

Only direct effect was considered

Benedetti and Vivart (2018, submitted)

Goals of the Project

- This project aims to improve our understanding about the following questions:
- How important are aerosols for predicting the physical system (at short-range, medium range and S2S time scales) as distinct from predicting the aerosols themselves?
- What are the current capabilities of NWP models to simulate aerosol impacts on weather and subseasonal prediction?
- How important is forecast skill (in the atmospheric sense) for air quality forecasting?
- Are the S2S air quality forecasts useful for impacts purposes?

S2S possible Re-forecast Experiments Experiment 1: Dust prediction and impact

- Starting dates 1st March/1st April/1st May 2003-2018
- Minimum 5-member ensemble
- At least 32-day long simulations
- Climatological aerosols vs prognostic aerosols (dust only)
- Initialized by own analysis/re-analysis
- Aerosol direct effect (indirect effect is optional)

S2S possible Re-forecast Experiments Experiment 2: Biomass burning

- Starting dates 1st Aug/1st Sept/1st Oct 2003-2018
- Minimum 5-member ensemble
- At least 32-day long simulations
- Climatological emissions vs prescribed observed emissions
- Initialized by own analysis/re-analysis
- Aerosol direct effect (indirect effect is optional)

Limited area domain (focus on weather predictability)

Proposed years: 2016-2018 Forecast lenght: 72h from 00:00 UTC Time resolution: 3h *Configuration*: as in operation *Variables*: see table

Event	Period	Domain	Center of domain	Effects to be analysed
Dust in Egypt	Mar-Apr-May	from Eq. to 50°N, Eq. to 60°E	30°E, 25°N	Direct Indirect (optional) No Aer
BB S. America	Aug-Sep-Oct	32°W to 76°W 33°S to 6°N	60°W, 10°S	Direct Indirect (optional) No Aer
BB S. Africa	Aug-Sep-Oct	0°E to 60°E 40°S to 10°N	30°E, 15°S	Direct Indirect (optional) No Aer

Open tasks

• Define a reference database for model evaluation

• Verify reanalysis availability, like MACC and MERRAero (how is the access to such data and how feasible is the comparison considering different model configurations?)

• Verify availability of data from field campaigns (e.g. Oracles) and convert into data base suitable for model assimilation and verification

• Define specific statistical scores – mostly deterministic for the limited-area predictions at short-range time-scales and mostly probabilistic for the global forecasts at subseasonal time-scales

• Consider the evaluation of concentrations among models (important for local applications) and define specific statistical scores

• Define storage of data, format and delivery

Suggestions from the teleconference held September 14th

- Include North America in the regional experiments
- Evaluate emissions generated by each center using data from ORACLES over South Africa
- Increase the number of air quality variables
- Increase the forecast length to 5 days (120 hours)
- Define a time-line of the experiments

Thanks for your attention!