

www.cptec.inpe.br

33rd WGNE Meeting, Tokyo, Japan Oct 2018

Fixing systematic errors at CPTEC

Ariane Frassoni Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cacheira Paulista, Brazil

Thanks to P. Kubota, G. Pereira, D. Castilho, E. Ramirez, D. França, E. Vendrasco

ariane.frassoni@inpe.br

October 2018

Ciência e Tecnologia a serviço da sociedade

INISTÉRIO DA GÈNCIR, TECNOLOGIA E INOVAÇÃO ISTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Outline

- \rightarrow Progress on regional modelling
- \rightarrow Progress on global modelling

• Model: WRF

www.cptec.inpe.br

- Dynamic Core: ARW
- Initial version: 3.9.1.1
- Resolution: 5km
- Levels: 42
- Vertical coordinate: Sigma
- Operational since June 1, 2018
- It runs twice a day (00 e 12Z)

Microphysics	Ferrier
PBL	YSU – Yonsei University
Surface	Noah
Surface Layer	Monin-Obukhov revised
Convection	New Tiedke
Radiation	RRTMG

BRAMS air quality (20km already in operation)

Improvements in the pre-processor tool

Improvements of 3BEM methodology – review of emission factors

FRP methodology (version 1.6)

Streets invetory for MARJ (version 1.5)

Improvement of urban emissions for MASP

Improvements in the model (only research)

Implementation of Runge-Kutta time integration scheme (under tests)

Implementation of a new computational method on chemistry module

~70% more efficient

3BEM Model

www.cptec.inpe.br

Biomass burning emissions inventory Brazilian Fire Emission Model: <u>Regional scale - daily basis</u>

Longo et al, 2011

Courtesy G. Pereira and D. França

155

205

259

309

355

3BEM

60W 55W 50W 45W 40W 35W 30W 25

Emission factors updates

Annual Emissions of CO (Tg) from biomass burning in South America

- Emission inventories with 20 km x 20 km spatial resolution;
- PREP using fire counts;

www.cptec.inpe.br

• EFs updates based on Andreae e Merlet (2001), Andreae (personal comunication, 2016) and Yokelson et al. (2013).

Courtesy G. Pereira and D. França

FRP implementation

Inventories evaluation CO (Kg/m2)

FRP

CPEC Towards the implementation of FRP at CPTEC/INPE

Applying an optimization method to improve convective parameterizations

F١

10N

53

10S

15S

205

255

ENS_50km: Total Prec (mm, 24h) Ending at 00Z/21/FEB/2004

305 355 405 453 1 85w 80w 75w 70w 65w 60w 55w 50w 45w 40w 35w 30w **GPCP** GPCP TOTAL PREC 10N 105 155 205 255 305 355 405 455 85W 80W 75W 70W 65W 60W 55W 50W 45W 40W 35W 30W

Freitas et al, 2005b

 $\min |P_M - P_O|$

model

obs

dos Santos et al. (2013)

Inverse problem: parameter estimation

Inverse model

$$J(\vec{P}) = min||P_M(\vec{W}^T) - P_O||_2^2$$

= $\sum_{i=1}^5 [P_M(w_i) - P_O]^2, \quad P_M = \sum_{i=1}^5 w_i P_i$

 $\overrightarrow{W}^T = [w_{GR}, w_{MC}, w_{LO}, w_{KF}, w_{AS}]$

Weights

Heating rate (Q1) Northwest South America

Mean

--- ENCDFY — EN

Bias 2-meter temperature

BAM - Global Model configuration

	Figueroa et al., 2016
Dynamics	Spectral EU or SL semi-implicit model, with hydrostatic approximation, sigma vertical coordinate
Cloud microphysics	Double-moment microphysics scheme (Morrison et al. 2009)
SW and LW radiation Implement. optical properties	CLIRAD; Chou and Suarez (1999) and modified by Tarasova and Fomin (2000)
Deep convection Improvements on the scheme	Simplified version of Arakawa
Shallow convection	UW shallow convection (Park and Bretherton 2009)
Vertical diffusion	Modified Mellor and Yamada (1982) scheme
Land surface processes New eq. to compute surface albedo	Dynamic vegetation model, IBIS

New eq. to compute surface Seasonal variability of LAI

Brazilian global Atmospheric Model

Implementation of a new cloud parameterization

Without PDF(a) and with BAM PDF (1998-2008) cloud cover over Amazon for winter (purple), spring (green), fall (blue), summer (orange)

Courtesy Dayana Castilho

The Climate Science for Service Partnership Brazil

www.cptec.inpe.br

www.cptec.inpe.br

Thanks for your attention!